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2 TSQM has revealed new features and effects: Weak-Measurements

In other words, suppose first that the earlier measurement is that of σ̂z and the later is that of σ̂x (see fig. 6).

Figure 6: Measuring both the x and z spin components of a spin-1/2 particle in the interval between the pre- and
post-selections of figure 4 yields different results depending on the time order of the two measurements. (a) If
the first interim measurement measures the component set by the pre-selection, then both interim measurements
are determined by the pre- and post-selections. (b) Reversing the order of the interim measurements destroys
that certainty.

When measurements are performed in this order, it is obvious that at t1 we obtain with certainty σ̂z = +1 -
otherwise it would be inconsistent with the initial state - and the measurement at t2 yields, also with certainty,
σ̂x = +1 - otherwise it would be inconsistent with the final state. Suppose however that the order of the
measurements is reversed, i.e. we measure σ̂x at t1 and σ̂z at t2 (fig 6.b). In this case each of these measurements
can yield +1 as well as −1; all four possible combinations of results are consistent with the initial and final
boundary conditions. ¿From the point of view of our two wave-functions formalism we understand this behavior
in the following way. The information that σ̂z = +1, given by the initial condition and propagating forward in
time cannot reach the time t2 when we verify the value of σ̂z because it is disrupted by the measurement of σ̂x

performed at t1. Similarly, the information that σ̂x = +1, given by the final condition and propagating backward
in time cannot reach the time t1 when we verify the value of σ̂x because it is disrupted by the measurement of
σ̂z at t2.

Thus because the measurements of σ̂z and σ̂x do not yield with certainty +1 in both time orders, we shouldn’t
expect them to yield with certainty +1 when measured simultaneously (which is implied in measuring σ̂45 =
1/

√
2(σ̂x + σ̂z) ).
Now, once we understood the reason for which eq. 1.7 failed, the resolution of the problem is clear: If we

would be able to somehow measure σ̂x and σ̂z such that they do not disturb each other, than we could measure
them simultaneously and indeed obtain the paradoxical result σ̂45 =

√
2.

Obviously as [σ̂z, σ̂x] 6= 0, the measurement of σ̂z completely disturbs σ̂x and vice-versa. However, at this
point we note that it is actually possible to measure two non-commuting variables in such a way as not to disturb
completely each other, if we sacrifice precision. This is the principle behind all macroscopic measurements. That’s
why classically (i.e. in the every-day semiclassical regime of quantum mechanics) we can measure, for example,
both x and p and their measurements commute - in fact we measure them only approximatively, with combined
precision far worse than ∆x∆p = h̄. So in general quantum mechanics offers the possibility of a trade off: one
can gain non-disturbance by giving up precision. Let us now apply this idea to our case.

To be able to achieve a semi-classical regime we have to modify our problem. Instead of considering an
ensemble of spin 1/2 particles we shall consider an ensemble of “particles”, each “particle” being in fact formed
by a large number N of spin 1/2 particles, such as a ferromagnet. As pre- and post-selected states we take now
|σ̂z = N〉 and |σ̂x = N〉 respectively.

Now, the spin of a ferromagnet can be measured quite simply by measuring the magnetic field produced by
it. For example, we can measure the magnetic field along any direction by the use of a piece of iron tied to a
spring and oriented in an appropriate direction
As it is well-known, such measurements do commute with each other. What happens, of course, is that in such
measurements the magnetic field is not measured to a very high precision. The flip of a few spins would hardly
produce a significant modification of the spring elongation, far less than the uncertainty of the spring’s length
due to its quantum fluctuations. On the other hand, the interaction in between the piece of iron with each
individual spin is very small, so that the spins are hardly disturbed, which is the reason why the measurements
commute with each other. In principle it is quite possible to achieve a measurement of the magnetic field with
error of, say,

√
N , while not disturbing more than

√
N of the spins. But

√
N is insignificant comparative to

N when N is large, so that for large N we obtain very precise spin measurements which, at the same time,
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Figure 7: Probability distributions for different outcomes of the measurement of the spin component σ̂45 of a sys-
tem of N spin-1/2 particle pre-selected in the state |σ̂z〉 = +N/2. Before any post-selection, the green histogram
represents measurement outcomes for an ideal measurement. The blue curve represents the probabilities in an
approximate measurement. After post-selection for very improbable state |σ̂x〉 = +N/2, only the red distribution
way out in the tail survives.

produce very little disturbance. In this regime, since σ̂z and sx effectively commute, they can also be measured
separately. We therefore PREDICT that in this regime, the measurement of σ̂45 on our pre- and post-selected
ensemble will yield, for almost each particle (ferromagnet)

σ̂45 =
σ̂x + σ̂z√

2
=
N +N√

2
±O(

√
N) =

√
2N ± O(

√
N), (7)

i.e. a value completely outside the spectrum of the spin operator (which, in this case, extends only from −N to
N) !!!

To observe such a strange effect there is a price to pay - the probability of success in preparing the appropriate
pre- and post-selection ensemble is very low. Indeed, we start with N spins polarized along the “up” z direction.
As the “macroscopic” measurement of σ̂45 doesn’t significantly disturb the spins, it follows that just before the
post-selection measurement it is still the case that all the N spins of the ferromagnet are oriented “up” z. Each
individual spin has therefore only a 1/2 chance to be found “up” x at the post-selection measurement. The total
chance of finding all n spins “up” x is therefore 2−N , i.e. an exponentially small number. Nonetheless, we are
certain that when we were lucky enough and the post-selection succeeded, the intermediate measurement of σ̂45

yielded the paradoxical result of
√

2N .
The above prediction is far from trivial or intuitive from the point of view of the standard formalism of

quantum mechanics. It is by no means a result which could be seen immediately from the beginning, by
inspecting the state of the ensemble, as were the predictions about the vales of the x and z spin components. In
order to verify it, we need to carefully model the “macroscopic” measurements described above - in the regime
we considered we are far from the usual projection postulate, and the conditional probabilities formula eq. 1.7
doesn’t apply anymore. We must then take into account that the measurements, while not completely disturbing
the spins, are not completely precise and can yield errors. As we’ll show bellow, the paradoxical result σ̂45 =

√
2N

appears in the end through a mysterious conspiration of these measurement errors, which in turn,result from an
intricate interference effect in the measuring device. Nevertheless, the two wave-functions formalism allows us
to predict the result in a most simple and intuitive way. This is (one of) the major reasons why we propose it.

More formally, to explore the relationship between |Ψin〉 and |Ψfin〉 we must reduce the disturbance on the
system during the intermediate time. If one doesn’t perform absolutely precise (ideal) measurements but is willing
to accept some finite accuracy, then one can bound the disturbance on the system. For example, according to
Heisenberg’s uncertainty relations, a precise measurement of position reduces the uncertainty in position to zero
∆x = 0 but produces an infinite uncertainty in momentum ∆p = ∞. On the other hand, if we measure the
position only up to some finite precision ∆x = ∆ we can limit the disturbance of momentum to a finite amount
∆p ≥ h̄/∆. Similarly, unlike finite rotations exp iσxθx or exp iσyθy around the x or y axis, the infinitesimal
rotations exp iεσx and exp iεσx do in fact commute -their product being up to O(ε)2 corrections 1 + iε(σx +σy).
This suggests that we should try to measure the spin σξ by turning on a weak magnetic field B or turn it for a
short time so that the precession angle around the ξ axis θ(ξ) ∼ Bt will be small.

By replacing precise measurements with a bounded-measurement paradigm, we often find that paradoxical
situations remain. Nevertheless, weak measurements produce surprising and often strange, but nevertheless
consistent structures.
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2.1 Quantum Measurements

In general, measurement of a quantum operator Â is done by turning on and off an interaction between the
quantum system of interest with wavefunction |Ψin〉 and a measuring device: Hint = −λ(t)Q̂mdÂ where Q̂md

is an observable of the measuring-device (e.g. the position of the pointer) and λ(t) is a coupling constant
which determines the duration and strength of the measurement (the analog of the precession angle above).
For an impulsive measurement we need the coupling to be strong and short and thus take λ(t) 6= 0 only for

t ∈ (t0 −ε, t0 +ε) and set λ =
∫ t0+ε

t0−ε λ(t)dt. We may then neglect the time evolution given by Hs and Hmd in the

complete Hamiltonian H = Hs +md +Hint. Using the Heisenberg equations-of-motion for the momentum P̂md

of the measuring-device (conjugate to the position Q̂md), we see that P̂md evolves according to dP̂md

dt
= λ(t)Â.

Integrating this, we see that Pmd(T )−Pmd(0) = λÂ, where Pmd(0) characterizes the initial state of the measuring-
device and Pmd(T ) characterizes the final. To make a more precise determination of Â requires that the shift
in Pmd, i.e. δPmd = Pmd(T ) − Pmd(0), be distinguishable from it’s uncertainty, ∆Pmd. This occurs, e.g., if
Pmd(0) and Pmd(T ) are more precisely defined and/or if λ is sufficiently large (see figure 8.a). However, under
these conditions (e.g. if the measuring-device approaches a delta function in Pmd), then the disturbance or
back-reaction on the system is increased due to a larger Hint, the result of the larger ∆Qmd (∆Qmd ≥ 1

∆Pmd
).

When Â is measured in this way, then any operator Ô ([Â, Ô] 6= 0) is disturbed because it evolved according to
d
dt
Ô = iλ(t)[Â, Ô]Q̂md, and since λ∆Qmd is not zero, Ô changes in an uncertain way proportional to λ∆Qmd.

In the spin-1/2 example, the conditions for an ideal-measurement δP ξmd = λσ̂ξ � ∆P ξmd will also necessitate

∆Qξmd � 1
λσ̂ξ

which will thereby create a back-reaction causing a precession in the spin such that ∆Θ � 1 (i.e.

more than one revolution), thereby destroying (i.e. making completely uncertain) the information that in the
past we had σ̂x = +1, and in the future we will have σ̂y = +1.

In the Schroedinger picture, the time evolution operator for the complete system from t = t0 −ε to t = t0 +ε
is exp{−i

∫ t0+ε

t0−ε H(t)dt} = exp{−iλQ̂mdÂ}. This shifts the pointer, namely the momentum Pmd (see figure 8.a)

of the measuring device, by an amount δPmd proportional to λ =
∫
λ(t)dt (the analog of the precession angle

above) and the “value” of Â in the state ψ. That “value” depends critically on the procedure of measurement.
Conventional Ideal or strong Von Neuman measurements have λ >> 1. More specifically the pointer or

momentum shift δP imd is λ.ai when ψ = |ai > is any one of the eigenstates |ai > of the operator Â with
eigenvalue ai. We demand that these shifts and differences thereof exceed the original quantum spread of the
Pointer wave function Φ(Pmd),∆Pmd.

Thus, after the experiment is done, the MD is at one of the distinct almost orthogonal states Φi, with Pmd
shifted by the different δi(Pmd). When the initial |Ψin〉 is a superposition of A eigenstates |Ψin〉 = Σci|a1〉 the
strong measurement yields the corresponding entangled superposition of particle and measuring device states:

Σci|ai〉ΦiPmd|ai〉 (2.8)

The notion that such strongly shifted pointers behave classically and cannot interfere underlies the “collapse”
where the above superposition becomes a statistical mixture or density matrix with weights ρi = |ci|2 - a feature
which cannot fully be explained within the framework of linear evolution.
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Figure 8: a) with an ideal or “strong” measurement at t (characterized e.g. by δPmd =λa1�∆Pmd), then ABL gives the
probability to obtain a collapse onto eigenstate a1 by propagating 〈Ψfin| backwards in time from tfin to t and |Ψin〉 forwards
in time from tin to t; in addition, the collapse caused by ideal-measurement at t creates a new boundary condition |a1〉〈a1|
at time t ∈ [tin, tfin]; b) if a weak-measurement is performed at t (characterized e.g. by δPmd = λAw �∆Pmd), then the
outcome of the weak-measurement, the weak-value, can be calculated by propagating the state 〈Ψfin| backwards in time
from tfin to t and the state |Ψin〉 forwards in time from tin to t; the weak-measurement does not cause a collapse and thus
no new boundary condition is created at time t.
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2.1.1 Weakening the interaction between system and measuring device

We however focus on the opposite case of weak measurements. The interactionHint =−λ(t)Q̂mdÂ is weakened
by minimizing λ∆Qmd so that the pointer shift for any of the |ai〉 states and for superpositions thereof is smaller
than the uncertainty ∆(Pmd) in the pointer (momentum) of the measuring device which we take as a Gaussian
wave function of width ∆(Pmd) = 1 (see Fig ) Thus the hardly shifted MD cannot instigate a collapse.

We may then set e−iλQ̂mdÂ≈1 − iλQ̂mdÂ and use a theorem1:

Â|Ψ〉 = 〈Â〉|Ψ〉 + ∆A|Ψ⊥〉 , (2.9)

to show that the initial quantum state evolves under the weak measurement according to:

e−iλQ̂mdÂ|Ψin〉=(1−iλQ̂mdÂ)|Ψin〉=(1− iλQ̂md〈Â〉)|Ψin〉− iλQ̂md∆Â|Ψin⊥〉 (2.10)

The norm of this state ‖ (1 − iλQ̂mdÂ)|Ψin〉 ‖
2

= 1 + λ2Q̂2
md〈Â2〉. Hence, the probability to leave |Ψin〉 un-

changed after the weakened measurement approaches unity:

1 + λ2Q̂2
md〈Â〉

2

1 + λ2Q̂2
md〈Â2〉

−→ 1 (λ→ 0) (2.11)

while the probability to disturb the state (i.e. to obtain |Ψin⊥〉) is:

λ2Q̂2
md∆Â

2

1 + λ2Q̂2
md〈Â2〉

−→ 0 (λ→ 0) (2.12)

2.1.2 Information gain without disturbance: safety in numbers

The key observation is that the probability to disturb the state decreases as O(λ2), but the shift of the measuring-
device grows linearly O(λ), so δPmd = λai. For a sufficiently weak interaction (e.g. λ � 1), the probability
for disturbing the state can be made arbitrarily small, while the measurement still yields information. For any
given weak measurement, the shift in the measuring-device is much smaller than its uncertainty δPmd � ∆Pmd

(figure 8.b) so we really cannot use this information.

However, if a large (N ≥ N′

λ
) number of particles is used, then the shift of all the measuring-devices (δP totmd ≈

λ〈Â〉N′

λ
= N ′〈Â〉) becomes distinguishable because of repeated integrations, while the collapse probability still

goes to zero.
Classical deterministic measurements of Â, i.e. of it’s average in the state of interest, also do not disturb that

state and are of the form discussed. A topical example is provided by LIGO . This lazer interferometric device
measures the tiny change in distance δ(d) 10−14 cm between two mirrors induced by the passage of a gravity
wave . the resulting shift in the interference pattern is less than a 10 billionth of a fringe is observable by using
the many coherent identical photons provided by the laser to obtain a net effect on the large classical wave.

1where 〈Â〉 = 〈Ψ|Â|Ψ〉, |Ψ〉 is any vector in Hilbert space, ∆A
2 = 〈Ψ|(Â − 〈Â〉)2|Ψ〉, and |Ψ⊥〉 is a state such that 〈Ψ|Ψ⊥〉 = 0.



10

2.1.3 Adding a post-selection to the weakened interaction: Weak-Values and Weak-Measurements

Having established that weak measurements allow information to be gained without disturbance- it is fruit-
ful to inquire whether this type of measurement reveals new features (in the context of TSQM). With weak-
measurements (which involve adding a post-selection to this ordinary -but weakened- von Neumann measure-
ment), the measuring-device registers a new value, the weak-value. As an indication of this, we insert a complete
set of states {|Ψfin〉j} into the outcome of the weak interaction of §2.1.1 (i.e. the expectation value 〈Â〉):

〈Â〉 = 〈Ψin |




∑

j

|Ψfin〉j〈Ψfin|j



 Â|Ψin〉 =
∑

j

|〈Ψfin |jΨin〉|2
〈Ψfin |j Â |Ψin〉
〈Ψfin |jΨin〉

(2.13)

If we interpret the states |Ψfin〉j as the outcomes of a final ideal-measurement on the system (i.e. a post-selection)
then performing a weak-measurement (e.g. with λ∆Qmd → 0) during the intermediate time t ∈ [tin, tfin], provides
the coefficients for |〈Ψfin|jΨin〉|2 which gives the probabilities Pr(j) for obtaining a pre-selection of 〈Ψin| and
a post-selection of |Ψfin〉j. The intermediate weak-measurement does not disturb these states and the quantity

Aw(j) ≡ 〈Ψfin|jÂ|Ψin〉
〈Ψfin|jΨin〉 is the weak-value of Â given a particular final post-selection 〈Ψfin |j. Thus, from the definition

〈Â〉 =
∑

j Pr(j)Aw(j), one can think of 〈Â〉 for the whole ensemble as being constructed out of sub-ensembles
of pre-and-post-selected-states in which the weak-value is multiplied by a probability for a post-selected-state.

The weak-value arises naturally from a weakened measurement with post-selection: taking λ << 1, the final
state of measuring-device in the momentum representation becomes:

〈Pmd|〈Ψfin|e−iλQ̂mdÂ|Ψin〉|ΦMD
in 〉 ≈ 〈Pmd|〈Ψfin|1 + iλQ̂mdÂ|Ψin〉|ΦMD

in 〉

≈ 〈Pmd|〈Ψfin | Ψin〉{1 + iλQ̂
〈Ψfin|Â|Ψin〉
〈Ψfin|Ψin〉

}|ΦMD
in 〉

≈ 〈Ψfin|Ψin〉〈Pmd|e−iλQ̂Aw |ΦMD
in 〉

→ 〈Ψfin|Ψin〉 exp
{
−(Pmd − λAw)2

}
(2.14)

where Aw =
〈Ψfin|Â|Ψin〉
〈Ψfin|Ψin〉

The final state of the measuring-device is shifted by a very unusual quantity, the weak-value, Aw, which is not
in general an eigenvalue of Â

We have used such limited disturbance measurements to explore many paradoxes. A number of experiments
have been performed to test the predictions made by weak-measurements and results have proven to be in
very good agreement with theoretical predictions Since eigenvalues or expectation values can be derived from
weak-values we believe that the weak-value is indeed of fundamental importance in QM. The weak-value is the
relevant quantity for all generalized weak interactions with an environment, not just measurement interactions.
The only requirement being that the 2-vectors, i.e. the pre-and-post-selection, are not significantly disturbed by
the environment.

2.1.4 How the weak-value of a spin-1/2 can be 100

Let’s finally return to the spin 1/2 system. There is a sense in which both ProbABL(σ̂x = +1) = 1 and

ProbABL(σ̂y = +1) = 1 are simultaneously relevant because measurement of one does not disturb the other.
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Since measurement of σ̂ξ also can be understood as a simultaneous measurement of σ̂x and σ̂y, with limited-
disturbance measurements, we can simultaneously use both σ̂x = +1 and σ̂y = +1 to obtain

(σ̂ξ=45◦)w =
〈↑y | σ̂y+σ̂x√

2
| ↑x〉

〈↑y|↑x〉
=

{〈↑y |σ̂y} + {σ̂x| ↑x〉}√
2〈↑y|↑x〉

=
〈↑y |1 + 1| ↑x〉√

2〈↑y|↑x〉
=

√
2 (2.15)

This was confirmed experimentally for an analogous observable, the polarization. The weak-value is
√

2 times
bigger than the allowed eigenvalue.




