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1 Consistency of TSQM with Standard Quantum Mechanics

ABL calculated the probability for the outcome of measuring any observable Â (with eigenvalues aj and eigen-
vectors |aj〉) when this measurement occurred at a time t (which is intermediate to the pre- and post-selection
t ∈ [tin, tfin]) and subject to obtaining the pre-and-post-selection:

ProbABL(aj , t|Ψin, tin; Ψfin, tfin) =
|〈Ψfin|Ut→tfin |aj〉〈aj|Utin→t|Ψin〉|2

∑

n |〈Ψfin|Ut→tfin|an〉〈an|Utin→t|Ψin〉|2
(1.1)

This is intuitive: we start with the pre-selection, |Ψin〉. We then evolve this forward in time with the time
displacement operator: Utin→t = exp{−iH(t− tin)} (figure 2.a, H the free Hamiltonian). Then |〈aj|Utin→t|Ψin〉|2
gives us the probability to obtain |aj〉. We then evolve |aj〉 forward in time with Ut→tfin . Then |〈Ψfin|Ut→tfin|aj〉|2
is the probability to obtain |Ψfin〉. The total conditional probability to obtain |aj〉 given all three stages is the
product, eq. 1.1, the denominator giving the normalization.

Consider the time-reverse of eq. 1.1: 〈Utfin→tΨfin|aj〉〈Ut→tinaj|Ψin〉 (figure 2.b). This is obtained by applying
Ut→tfin on 〈Ψfin| instead of on 〈aj | and Utin→t on 〈aj | instead of on |Ψin〉. (Note: re-writing 〈Ψfin|Ut→tfin as

〈U †
t→tfin

Ψfin| occurs throughout quantum mechanics due to the symmetry U †
t→tfin

=
{
e−iH(tfin−t)

}†
= eiH(tfin−t) =

e−iH(t−tfin) = Utfin→t.)
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Figure 2: Time-reversal symmetry in probability amplitudes.

We note that the 2-vectors relevant to the intermediate time t, are 〈Utfin→tΨfin| and Utin→t |Ψin〉 (which are
not just the time-reverse of each other). So, neither figures 2.a nor 2.b by themselves give the right picture for
measurements at t. In other words, we need 〈Utfin→tΨfin| which propagates the post-selection back to t, and
Utin→t |Ψin〉 which propagates the pre-selection forward to t, (see conjunction of both figures 2.a and 2.b giving
2.c). This simple mathematical manipulation leads to the main idea behind TSQM:

ProbABL(aj , t|Ψin, tin; Ψfin, tfin) =
|〈Utfin→tΨfin|aj〉〈aj|Utin→t|Ψin〉|2

∑

n |〈Utfin→tΨfin|an〉〈an|Utin→t|Ψin〉|2
(1.2)

We emphasize several advantages evident even from this step:

• TSQM is consistent with standard quantum mechanics.

• the probability (and amplitude) are symmetric under exchange of |Ψin〉 and |Ψfin〉, and,

• whenever we encounter a bra, it suggests a state is propagating backwards-in-time.

• Evaluating time-asymmetric ABL requires more computation: many time evolutions in the denominator
of eq. 1.1, Ut→tfin |a1〉... Ut→tfin |an〉, in contrast to a single time evolution in eq. 1.2 〈Utfin→tΨfin| (see §3).
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1.1 A paradox

We motivate TSQM with a paradox concerning the relativistic covariance of the state-description.

Consider two spin-1/2 particles prepared in an EPR state: |ΨEPRt = 0)〉 = 1√
2
{|↑〉A |↓〉B− |↓〉A |↑〉B}.

Suppose at some later time t2, the particles separate to a distance L and Alice measures her spin in the z-
direction and obtains the outcome |↑z〉A. According to the usual interpretation, measurements on either particle
will instantly reduce the EPR state into a direct product |Ψ(t2 + ε) = | ↑z〉A| ↓z〉B. I.e. after Alice performs
her measurement at t = t2, then the joint wavefunction collapses so when Bob measures his particle at t2 + ε,
he will find that it had collapsed to | ↓z〉B (see figure 3.a).

-
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verify {|↑〉A|↓〉B−|↓〉A|↑〉B}
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lab plane of simultaneity
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|↑z〉A

|↓z〉B
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rocket plane of simultaneity

trocket = t1 < t2

i i
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verify {|↑〉A|↓〉B−|↓〉A|↑〉B}

Figure 3: Collapse of singlet state in 2-different frames of reference; a) the tlab = 0 hypersurface intersects the B worldline
before B’s measurement, b) the trocket = 0 hypersurface intersects the B worldline after B’s measurement.

However, in a rocket-frame, Bob’s measurement occurs first and then Alice’s (see figure 3.b). The lab-frame
believes that Alice’s measurement caused the collapse whereas the rocket-frame disagrees and believes that Bob’s
measurement caused the collapse. While the two different versions give the same statistical results at the level
of probabilities, they differ completely on the description of the state during the intermediate times.

TSQM re-introduces Lorentz covariance because we must always look to a future vector in order to complete
the specification of the state. The boundary condition of the other particle always enforces correlations, without
the need to specify a moment when it becomes true due to some non-local state reduction.

In our example, the full state is the bra-ket:

〈Ψfin||ΨEPR〉 =
1√
2
〈↑z |A {〈↑B +〈↓ |B}

1√
2
{|↑〉A |↓〉B− |↓〉A |↑〉B} (1.3)

Both | ↑z〉A and |ΨEPR〉 were determined by local measurements and therefore transform covariantly as do all
local events. If Alice changes her mind and measures the y-direction instead of the z-direction, then this would
change the post-selected vector all the way back to |ΨEPR〉. This solves the paradox.[?].

1.2 Pre-and-post-selection and Spin-1/2

TSQM reveals surprising properties even for the simplest quantum system. Consider a spin-1/2 particle pre-
selected |Ψin〉 = |σ̂x = +1〉 = |↑x〉 and post-selected |Ψfin〉 = |σ̂y = +1〉 = | ↑y〉, so half the particles are excluded.
ABL, eq. 1.2, tells us the outcome for ideal-measurements during t ∈ [tin, tfin]: if σ̂x is measured then:

ProbABL(σ̂x = +1) = 1 (1.4)

If σ̂y is measured, then
ProbABL(σ̂y = +1) = 1 (1.5)

One may legitimately wonder, however, if this isn’t all quite trivial. Indeed, such pre and post-selected ensembles
are, of course, quite common in classical (i.e. non quantum) context. In quantum mechanics, however, there is
no way, even in principle, to know the result of the final measurement before t1. Post-selection is thus not a
surrogate for a more careful pre-selection. On the contrary, it leads to genuinely new information.

Consider measuring the spin in a direction ξ = 45◦ relative to the x− y axis:

σ̂45◦ = σ̂x cos 45◦ + σ̂y sin 45◦ =
σ̂x + σ̂y√

2
(1.6)
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Figure 4: A spin-1/2 particle in a region free of external magnetic fields is pre-selected at time t0 to be in the
quantum state with spin up in the z direction, and post-selected at t1 to be in the state with spin up in the x
direction. At any intermediate time, such a particle would have well-defined values of the two non-commuting
spin components Sz and Sx. Both would have to be +1/2.

If we insert both values, eq. 1.4, σ̂x = +1, and eq. 1.5, σ̂y = +1, into eq. 1.6, then we would obtain

σ̂45◦ =
1 + 1√

2
=

2√
2

=
√

2 (1.7)

. But, that can’t be right since the eigenvalues for any spin operator, including σ̂ξ, must be ±1. Moreover, the
predicted value σ̂45◦ =

√
2 is even larger than the largest possible eigenvalue, +1.

Still, Aharonov’s intuition was that there should be some way for both ProbABL(σ̂x = +1) = 1 and
ProbABL(σ̂y = +1) = 1 to manifest simultaneously to produce σ̂ξ =

√
2. The following suggests a clue. To

measure σ̂ξ say with a Stern-Gerlach apparatus, we switch on a magnetic field in the x-y direction. This mag-
netic field starts to precess the pre-selected σ̂x and the post-selected σ̂y around the x-y direction. This also
follows from the fact that σ̂x and σ̂y don’t commute. Obviously as [σ̂y, σ̂x] 6= 0, the measurement of σ̂y com-
pletely disturbs σ̂x and vice-versa. Since we disturb the two-vectors, we should not expect that both vectors
could be relevant to the intermediate time.

Figure 5: It would seem to follow that the spin component Sπ
4

along the 45◦ direction in the xz plane would

have to be +
√

2/2, not an eigenvalue and seemingly impermissible.


