1 Brief review of loss of interference from the Schrodinger perspec-
tive

We begin to motivate our approach by reviewing past attempts to analyze the disappearance of interference
whenever it is possible to detect through which slit the particle passes. The original debate was famously
conducted by Einstein and Bohr. Einstein attempted to challenge the consistency of quantum mechanics by
arguing that a Which Way Measurement (WWM) could be performed without destroying the interference pattern
by measuring the transverse recoil (i.e. the transverse momentum kick) of the double-slit screen after the particle
passed through. Bohr maintained that the consistency of quantum mechanics depended on the destruction of the
interference pattern when WWM information is obtained. He showed that the measurement-induced uncertainty
created in the transverse position of the screen by an accurate measurement of the transverse momentum was
sufficient to destroy the interference pattern.

This reasoning leads to a paradox which helps to motivate our approach. It has been argued (borrowing from
the discussion of the “Heisenberg microscope”) that if the particle were “observed” at the right slit, then the
photon involved in this observation should have a wavelength A<D /2 and a corresponding momentum uncertainty
Ap > 2h/D. This momentum uncertainty is imparted to the particle making its wave number k = p/h uncertain,
thereby destroying the interference pattern.

This argument is incorrect. To see this, assume that a sensitive detector, placed at the left slit, failed to
detect any particle. We then know that all particles passed through the right slit. The interference pattern will
then be completely destroyed despite the fact that there was no interaction with the detector! [10] [7] One might
suppose that since the action of opening/closing the left slit never caused an interaction with the particle at the
right slit, then nothing associated with the particle should change. But, it was first pointed out by APP [10]
that in this scenario when a WWM is performed without actually interacting with the interfering particle, then
the probability distribution of the momenta does change, although none of the moments of the momenta change.

To best resolve this paradox, we need to take a step back. We note that the effect of a generic interaction
or collision between any two quantum systems can be characterized by a change in the probability distribution
of the momentum i.e. going from an initial probability distribution, p;(p), to a final distribution, ps(p). We can
analyze this change in two ways?:

1. Look at moments such as (p™) = [ p(p)p"dp and calculate 6(p"™) = (p"); — (p™);, and thus ask how the
interaction affected these averages. This is the usual approach.

2. Or, we may look at the fourier transform of the probability distribution [ p(p)eiPPdp. (We will later see
that these functions, <e%pD ), are precisely the observables that are sensitive to the relative phase.) To
analyze the effect of the interaction, we calculate (e#PP) - (e7PD); and ask how the interaction affected
these averages.

In principle, one can discuss the effect of interactions using (1) or (2), since knowing (2) for all D is equivalent
to knowing (1) for all n.

1.1 Analyzing changes in probability distribution using method 1: moments of the
conserved quantity

Scully [7] et al and Storey [8] et al further debated the issues introduced by APP, resulting in many hundreds of
cited papers.

Scully et al were dissatisfied with Bohr’s original response to Einstein. They suggested that a microscopic
pointer (i.e. a micro-maser) could be used in such a way that the interference in a WWM is destroyed without
imparting any momentum to the particle (just as we alluded to earlier in the discussion of the case in which a
sensitive detector failed to find the particle at the left slit).

However, Storey (et al) countered this, stating that the momentum distribution does change when WWMs
are made. They noted that having a plane wave with initial Az = co and Ap = 0 impinge on the 2-slits projects
the initial plane wave onto “lumps” which therefore have a significant Ap.

The principal components of both camps’ arguments were previously put forward in APP, i.e. there is both a
change in probability and no change in the moments. But, can we actually observe the change in the probability
of the momentum when the left slit is open or closed? To determine whether the momentum is disturbed by
the WWM, the momentum of the particle must be known before the WWM and after. However, if an ideal

2We consider momentum here, but our comments apply to any conserved quantity.



measurement is made of the momentum before the WWM, then we have effectively measured the interference,
rendering useless the subsequent WWM.

The techniques of weak measurement have proven very useful in scenarios like this requiring manifestation
of two opposing situations, i.e. to have a “have-your-cake-and-eat-it” solution. Weak measurements have had a
direct impact on the central “mystery” alluded to by Feynman concerning indeterminism, namely the fact that the
past does not completely determine the future. This mystery was accentuated by an assumed “time-asymmetry”
within quantum mechanics, namely the assumption that measurements only have consequences after they are
performed, i.e. towards the future. Nevertheless, a positive spin was placed on quantum mechanic’s non-trivial
relationship between initial and final conditions by Aharonov, Bergmann and Lebowitz (ABL) [4] who showed
that the new information obtained from future measurements was also relevant for the past of quantum systems
and not just the future. This inspired ABL to re-formulate quantum mechanics in terms of pre- and post-
selected ensembles. The traditional paradigm for ensembles is to simply prepare systems in a particular state
and thereafter subject them to a variety of experiments. These are “pre-selected-only-ensembles.” For pre-and-
post-selected-ensembles, we add one more step, a subsequent measurement or post-selection. By collecting only
a subset of the outcomes for this later measurement, we see that the “pre-selected-only-ensemble” can be divided
into sub-ensembles according to the results of this subsequent “post-selection-measurement.” Because pre- and
post-selected ensembles are the most refined quantum ensemble, they are of fundamental importance and have
revealed novel aspects of quantum mechanics that were missed before, particularly the weak value which has
been confirmed in numerous weak measurement experiments. Weak values have led to quantitative progress
on many questions in the foundations of physics [19] including interference [12], field theory, in tunneling, in
quantum information such as the quantum random walk, in foundational questions, in the discovery of new
aspects of mathematics, such as Super-Fourier or super-oscillations, etc. It has also led to generalizations of
quantum mechanics that were missed before.

While it is standard lore that the wave and particle nature cannot manifest at the same time, weak measure-
ments on pre- and post-selected ensembles can provide information about both the (pre-selected) interference
pattern and about the (post-selected) direction of motion for each particle. This aspect of weak measurements
formed the basis for the first application of weak measurements to study the change in momentum for WWM
within the double-slit setup as presented by Wiseman [9]. This was followed by an experiment(Mir, Lundeen,
Mitchell, Steinberg, Garretson and Wiseman [23]). Besides clarifying the different definitions and different mea-
surements (etc) used by both sides of the debate, Wiseman and Mir et al show that the momentum transfer
can be observed for the spatial wavefunction used in the 2-slits (as opposed to momentum eigenstates) by using
weak measurements.

They implemented the weak measurement with position shifts and polarization rotations in a large optical
interferometer. Plotting the conditional probability to obtain a particular momentum (given the appropriate
post-selection) and integrating over all possible post-selections, they were able to verify both the Scully and
Storey viewpoints. With respect to Scully [7], they show that none of the moments of the momentum change.
With respect to Storey [§], they show that the momentum does extend beyond a certain width.

However, there are inherent limitations to any approach based on analyzing changes in the probability for
momenta through changes in the moments. For example, while momentum is of course conserved, there is no
definite connection between the probability of an individual momentum before and after an exchange between
the interfering particle and the slit. Furthermore, the analysis in terms of moments does not offer any intuition
as to how or why the probability of momentum changes.

1.2 Analyzing changes in probability distributions using using method 2: fourier
transform of the conserved quantity

When compared to the first (traditional) approach based on the moments, the second approach focusing on the
fourier transform of the probability distribution has many advantages, both mathematical and physical. In this
section, we briefly review some of the mathematical advantages, leaving much of the physical advantages to the
rest of the article.

The first “moments” approach to interference derived from intuitions developed with wavefunctions consisting
of just one “lump.” In these cases, the averages of x (or of p) evolve according to local classical equations of
motion. Also the uncertainties (Ax)? = @2 _% and (Ap)? = @2 —52, describing the spread in these
variables, have properties similar to those of the spread of variables in a classical situation with unsharply
defined initial conditions and which evolve according to diffusion-like rules.

This drastically changes when we have two or more separate “lumps” of the wavefunction. Indeed, the
wavefunction, after passing through the symmetric two-slits, consists of a superposition of two identical, but
physically disjoint “lumps,” 11, and ¥r (see fig. 1):
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Collapsing it to just ¥g(x) = (z|Yr) does not change Ap nor the expectation values of any finite order polynomial
in p, as none of these local operators have a non-vanishing matrix element between the disjoint “lumps” of the
wavefunction. In other words, measuring through which slit the particle passes does not have to increase the
uncertainty in momentum. Later in this article we will review another uncertainty relationship which is more
relevant for this issue.

Up until now we have focused on the disappearance of interference upon WWM. But the other fundamental
mystery highlighted by Feynman remains: namely, how does a particle localized at the right slit “know” whether
the left slit is open or closed? The first approach based on moments tell us nothing about this mystery. The
decisive importance of the second “fourier transform” approach for this mystery is best illustrated through a
basic theorem which characterizes all interference phenomenon: all moments of both position and momentum
are independent of the relative phase parameter o (until the wavepackets overlap):

Theorem I: Let ¥, = ¢ (z,t) + e*yr(z,t) such that there is no overlap of ¢r,(x,0) and r(z,0). If n and

m are integers, then for all valueg of ¢, and choices of a, :
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For the particular double-slit wavefunction, it is easy to see that if there is no overlap between 1, and YR
then nothing of the form ffooo U*zmp"Wdz will depend on « for any value of m and n. Furthermore, expanding
J{r e r }ramp™ {¢r,4e"“Yr }dx, we see that only the cross terms, i.e. (¢ |z"p"|e"*1hr), have the possibility
of depending on «; but operators of the form z"p" cannot change the fact that ¢¥g and ¥, do not overlap. When
integrated, these terms vanish and are therefore insensitive to the relative phase.

This suggests that these dynamical variables (e.g. (x), (p), Az, Ap) are not the most appropriate to de-
scribe quantum interference phenomena. What observables, then, are sensitive to this interference information
which appears to be stored in a subtle fashion? To fully capture the physics of these scenarios with wavefunc-
tions composed of multiple lumps, non-polynomial and non-local operators, connecting the disjoint parts are
required. For many, equi-distant slits, these are the discrete translation by +D, namely exp{i%f)D}, effecting
exp{—£pD}¢r (z) — ¢Yr(z — D) which overlaps with r,(z). The expectation value of the translation operator
exp{£pD} does depend on a: (¥, | exp{ipD/h} | ¥,) = e"*/2.

This provides the basis for a mechanism to explain how the particle at the right “knows” what is happening
at the left slit. As we will see, the second “fourier transform” approach even provides us with the parameters
relevant for this question (namely the distance between the slits), while the first “moments” approach remains
silent.

Before proceeding in the next section to the physics of interference for single particles, we briefly mention
two additional mathematical advantages concerning the second “fourier transform” approach.

First, all the moments (p") are averages of unbounded quantities, while (exp{+pD}) are averages of bounded
quantities. There are problems with unbounded quantities (as pointed out by Mir et al). Infinitesimal changes
in p(p) can cause very large changes in the moments (p"). To see this, consider a negligible change, dp(p),
in p(p). By negligible, we mean there is only a small change in the probability distribution. If we calculate
§(p™) = [ dp(p)p™dp, we could get a finite change if §p(p) differs from zero at a sufficiently large p. In the limit,
we could in fact consider p — oo and dp(p) — 0, in such a fashion that Ap™ is finite. Then clearly &§(p"*!)
diverges as do all higher moments. The second “fourier transform” approach never has these kinds of problems
and is always finite.

The other significant “mathematical” difference concerns the utility of conservation laws. As mentioned in
¢II.a, while conservation of momenta is certainly maintained for the averages of moments, there is no definite
connection between an individual momentum before and after an exchange in this general kind of setup. As
we shall see below, the second “fourier transform” approach uncovers an exchange of a new conserved quantity.
The conservation law for these quantities can be expressed in a “product-form” rather than a sum (as occurs for
ordinary momentum). This product-form conservation law is more relevant for many situations such as a change
in relative phase.



